Excursions to the cusps for geometrically finite hyperbolic orbifolds and equidistribution of closed geodesics in regular covers

نویسندگان

چکیده

Abstract We give a finitary criterion for the convergence of measures on non-elementary geometrically finite hyperbolic orbifolds to unique measure maximal entropy. an entropy controlling escape mass cusps orbifold. Using this criterion, we prove new results distribution collections closed geodesics such orbifold, and as corollary, equidistribution up certain length in amenable regular covers orbifolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equidistribution and counting for orbits of geometrically finite hyperbolic groups

1.1. Motivation and overview. Let G denote the identity component of the special orthogonal group SO(n, 1), n ≥ 2, and V a finite-dimensional real vector space on which G acts linearly from the right. A discrete subgroup of a locally compact group with finite covolume is called a lattice. For v ∈ V and a subgroup H of G, let Hv = {h ∈ H : vh = v} denote the stabilizer of v in H. A subgroup H of...

متن کامل

Constructing Geometrically Equivalent Hyperbolic Orbifolds

In this paper, we construct families of nonisometric hyperbolic orbifolds that contain the same isometry classes of nonflat totally geodesic subspaces. The main tool is a variant of the well-known Sunada method for constructing length-isospectral Riemannian manifolds that handles totally geodesic submanifolds of multiple codimensions simultaneously.

متن کامل

Eigenvalues of Congruence Covers of Geometrically Finite Hyperbolic Manifolds

Let G = SO(n, 1)◦ for n ≥ 2 and Γ a geometrically finite Zariski dense subgroup of G which is contained in an arithmetic subgroup of G. Denoting by Γ(q) the principal congruence subgroup of Γ of level q, and fixing a positive number λ0 strictly smaller than (n − 1)/4, we show that, as q → ∞ along primes, the number of Laplacian eigenvalues of the congruence cover Γ(q)\H smaller than λ0 is at mo...

متن کامل

Equidistribution of Holonomy about Closed Geodesics

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Basic structure on symmetric spaces and Eisenstein series . . . . . . . . . . . . . . . . . 7 2. Harmonic analysis on groups and the Selberg trace formula . . . . . . . . . . . . . . . 11 3. Multiplicities of discrete series . . . . . . . . . . . . . . . . ...

متن کامل

Density and equidistribution of half-horocycles on a geometrically finite hyperbolic surface

On geometrically finite negatively curved surfaces, we give necessary and sufficient conditions for a one-sided horocycle (hu)s≥0 to be dense in the nonwandering set of the horocyclic flow. We prove that all dense one-sided orbits (hu)s≥0 are equidistributed, extending results of [Bu] and [Scha2] where symmetric horocycles (hu)−R≤s≤R were considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2021

ISSN: ['0143-3857', '1469-4417']

DOI: https://doi.org/10.1017/etds.2021.101